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1. INTRODUCTION

Software technology is undergoing a transition from monolithic systems, constructed
according to a single overall design, into conglomerates of semi-autonomous, het-
erogeneous and independently designed subsystems, constructed and managed by
different organizations, with little, if any, knowledge of each other. Among the
problems inherent in such conglomerates none is more serious than the difficulty to
control the activities of the disparate agents operating in it, and the difficulty for
open groups of such agents to coordinate their activities with each other.

Coordination, which can be defined as “the managing of dependencies between

agents in order to foster harmonious interaction between them” [Malone and Crow-
ston 1994], is indispensable for effective cooperation between autonomous agents,
as well as for safe competition between them. A flock of birds, for example, must
coordinate its flight in order to stay in formation; and car drivers must coordinate
their passage through an intersection, if they are to survive this experience. Each
such coordination involves a certain policy, i.e., a set of rules of engagement—such
as stopping at a red light, in the driving case—that must be complied with by all
participants for the activity in question to be safe and harmonious. This is true for
coordination in software as well.

Consider, for example, a distributed database D, accessed by an heterogeneous
set C of autonomous agents—the clients of D. in order to prevent denial of services
to some clients due to overconsumption of database services by others, one may
choose to employ the following policy [Malone et al. 1993]:

A client x can present a query to the database only if it has a positive
budget bx available to it, and bx is reduced by one for each such query.
Budgets can be provided to individual clients by a designated regulator ;
and a client with a positive budget can give part of it to any of his peers.

Under this, to be called budgeted consumption (BC) policy, the regulator can
control the system, limiting the total load on the database by the amount of budget
it provides to clients; and the clients can coordinate their activities by exchanging
units of budgets between them.1

The implementation of a coordination policy must ensure that the policy is actu-
ally observed by every agent subject to it. In the case of the BC policy, for example,
one needs to ensure that no query is ever issued by a client who does not have a
positive budget, and that budget of clients is changed only as specified. This is sim-
ple to do with a close-knit group, whose members can all be carefully constructed
to satisfy the policy in question. This is how birds of a feather flock together,
having their rules of engagement inborn. This is also how the processes spawned
by a single program coordinate their activities, by having their rules of engagement
built in by the programmer or by the compiler.

But the implementation of such policies is much more problematic with open

groups, whose members are heterogeneous, and whose membership changes dynami-
cally and might be large. Our view of the appropriate nature of such an enforcement
mechanism is expressed by the set of guiding principles discussed below.

1As this example shows, coordination and control are closely related concepts, and we will often
use them interchangeably.
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First, the disparate members of an open group, which might have been built
independently, have little reason to trust each other to observe any given policy—
unless there is some enforcement mechanism that compels them all to do so. This
observation suggests the following principle:

Principle 1 (enforcement). A coordination policy for an open group needs

to be enforced.

The simplest way to enforce a coordination policy, and the one used often in current
practice, is via a central coordinator that mediates between the interacting parties.
For example, in the case of the BC policy above, one can place a single coordinator
between the distributed database and its clients. This coordinator would maintain
the budgets of all clients, not allowing any of them to violate this policy.

But such centralized coordination mechanism (CCM) is not scalable. When the
size of group C grows, the centralized coordinator becomes a bottleneck, and a
dangerous single point of failure—undermining the benefit of having the database
D itself distributed. Moreover this lack of scalability is not really necessary in this
case, since the BC policy is inherently local, in the sense that it can be complied with
by each client, without any knowledge of the behavior of any other client. We believe
that such local aspects of a policy should not require centralized enforcement. This
leads to the following principle:

Principle 2 (decentralization). The enforcement mechanism should not

require central control.

Next, due to their diversity, conglomerate systems are likely to employ multitude
of different coordination policies. And a single software agent operating within such
a system may find itself interacting with several groups of agents, operating under
disparate policies. If these policies are implicit in the code of the agents involved—
as is most often the case in current practice—or if different policies are expressed
by means of different formalisms and enforced with different mechanisms, it would
be very difficult to deploy groups that must operate under a given policy. The need
for easy deployment leads to the following, well known, principle:

Principle 3 (separation of policy from mechanism). Coordination poli-

cies should be made explicit, and be enforced by means of a single mechanism

that can implement a wide range of policies in a uniform manner.

Finally, we note that in a large system, if deployment cannot be done incremen-
tally, without making any requirements of the rest of the system, it probably cannot
be done at all. This gives rise to the following principle:

Principle 4 (incremental deployment). One should be able to deploy and

enforce a policy incrementally, without exacting any cost from agents and activities

not subject to it.

We describe in this paper a coordination mechanism, called law-governed interac-

tion (LGI), whose design has been based on these principles. The basic structure of
LGI is discussed in Section 2, and is applied to our example BC policy, for illustra-
tion. Some additional features of LGI are introduced in Section 3, and illustrated
with elaborations on the BC policy. The usage of LGI, its expressive power and
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its limitations are discussed in Section 4. The theoretical efficiency of LGI, and
the performance of its current implementation, via the Moses toolkit, are discussed
in Section 5, where we show that LGI is generally more efficient, and more scal-
able, than centralized coordination. In Section 6 we review related work, and we
conclude in Section 7.

2. LAW-GOVERNED INTERACTION (LGI)

Broadly speaking, LGI is a mode of interaction that allows an heterogeneous group
of distributed agents to interact with each other, with confidence that an explicitly

specified set L of rules of engagement—called the law of the group—is complied

with. A group of agents thus interacting via LGI under a given law L, is called an
L-group.

This section is organized as follows: We start in Section 2.1 by formally defining
the concept of an L-group. In Section 2.2 we present the other basic elements of
LGI. The law-enforcement mechanism is discussed in Section 2.3. Our language for
specifying laws is presented in Section 2.4, and its use is illustrated in Section 2.5,
by formalizing the BC policy of the introduction. The deployment of L-groups is
discussed in Section 2.6. We conclude this section by listing the various components
of the Moses toolkit that implements LGI.

2.1 The Concept of an L-Group

An L-group G can be defined as the four-tuple 〈L,A, CS,M〉 where,

1. L—the law of the group—is an explicit and enforced set of “rules of engage-
ment” between members of this group.

2. A is the set of agents belonging to G—the members of this group.

3. CS is a set {CSx | x ∈ A} of control states, one per member of the group. CS
is mutable, subject to law L of the group.

4. M is the set of messages that can be exchanged, under law L, between members
of G—they are called L-messages.

We will now elaborate on the components of an L-group.

The Law. The law is defined over a certain type of events occuring at members
of G, mandating the effect that any such event should have—this mandate is called
the ruling of the law for a given event. The events thus subject to the law of a
group under LGI are called regulated events—they include (but are not limited to)
the sending and arrival of L-messages.

The law of a given group G is global with respect to G, but it is defined locally at
each member of it. The law is global, in that all members of the group are subject
to it; and it is defined locally, at each member, in the following respects:

—The law regulates explicitly only local events at individual agents.

—The ruling of the law for an event e at agent x depends only on e itself and on
the local control-state CSx of x.

—The ruling of the law at a given agent x can mandate only local operations to
be carried out at x, such as an update of the local control-state CSx, or the
forwarding of a message from x to some other agent.
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Note that it is the globality of law LG that establishes a common set of ground rules
for all members of G, providing them with the ability to trust each other, in spite
of the heterogeneity of the group. And it is the locality of the law that enables its
scalable enforcement, by means of a trusted agent called controller associated with
individual members of the group.

Abstractly speaking, the law L of a group is a function that returns a ruling

for every possible regulated-event that might happen at a given agent. The ruling
returned by the law is a possibly empty sequence of primitive operations, which
is to be carried out in response to the event in question, at its home. (An empty
ruling simply implies that the event in question has no consequences—such an event
is effectively ignored.) Later we will introduce the language we use for specifying
such laws in our current implementation of LGI. But the nature of this language
is, in a sense, of a secondary importance.

The Group. We refer to members of an L-group as agents, by which we mean
autonomous actors that can interact with each other, and with their environment.
Such an agent might be an encapsulated software entity, with its own state and
thread of control, or it might be a human that interacts with the system via some
interface. (Given popular usage of the term “agent”, it is important to point out
that this term does not imply here either “intelligence” nor mobility, although
neither of these is ruled out.) Nothing is assumed here about the structure and
behavior of the members of a given L-group, which are viewed simply as sources of
messages, and targets for them.

We distinguish between two kinds of L-groups, regarding the management of
their membership: explicit groups and implicit ones—both of which are supported
by our Moses toolkit. An explicit L-group G is one whose membership is maintained
and regulated by a distinguished agent called the secretary of G, to be denoted by
SG . This secretary maintains the law LG , and the membership of G—and it acts as
a name-server for this group. Note that the secretary does not participate in the
exchange of messages between members of the group, once they found each other.
It thus has only a minor adverse effect on the scalability of the group.

An implicit L-group assumes no knowledge of its total membership, and it does
not use a central secretary. Anybody who operates under law L is considered a
member of the implicit L-group (there is, by definition, only one such group), and
any two members of this group can exchange L-messages, if they know each other’s
address. However, different members of an implicit group may be unaware of each
other’s existence, and there maybe nobody who knows what the membership of the
group is.

We will focus on explicit groups throughout this paper, leaving implicit groups,
whose implementation is now being tested, for a subsequent publication. We note
however, that as far as the user is concerned, the main differences between these
two types of groups is in their deployment, and in naming.

The Control-States. For each agent x in G, LGI maintains the control-state CSx

of this agent, whose semantics, for a given L-group, is defined by its law. Typically,
the control-state of an agent could represent such things as the role of this agent,
special privileges it has under this law, and various kinds of tokens it carries—and
it can change dynamically, subject to the law.
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Control-state CSx is not directly accessible to agent x (or to any other agent). It
is maintained by the controller assigned to x, and can be changed only by operations
included in the ruling of the law for events at x.

Structurally, CSx is a bag of Prolog-like terms, called the attributes of agent x,
whose meaning is defined by the law of any given group. For example, under the
law that implements the BC policy (defined in Section 2.5) each client will have
in its control-state a term budget(b), where b would represent the value of the
budget allocated to this client.

2.2 Additional Elements of LGI

Regulated Events. The events that are subject to laws are called regulated events.
Each such event is viewed as occuring at a certain agent h, called the home of the
event—strictly speaking, however, events occur at the controller Ch assigned to
their home. We introduce here four types of regulated events. The first pair of
events represents stages of the passing of an L-message. The remaining two types
of events, which will be discussed in detail only in Section 3, deal, respectively, with
obligations, and with exceptions.

1. sent(h,m,y)—occurs when an L-message m sent by h to y arrives at Ch. (The
sender h is the home of this event.) The destination y of the message m can be
either the name of a specific member in G, or a list of such names, which allows
for multicasting.

2. arrived(x,m,h)—occurs when an L-message m ostensibly sent by x, arrives at
Ch. Ostensibly, since the actual sender of this message may be other than x, as
the law under LGI has the power to misrepresent the sender—which is useful
in some cases. (The receiver h is the home of this event.)

3. obligationDue(...)—the occurrence of this event means that it is time to en-
force an obligation previously imposed on the home of this event. (Obligations
are discussed in Section 3.1).

4. exception(...)—the occurrence of this event means that some exceptional
condition has been raised at its home. (Exceptions are discussed in Section 3.2).

It should be pointed out that this is not a complete set of regulated events. Our cur-
rent LGI mechanism features several additional types of regulated events—dealing
with interoperability between laws, import of certificates, and other matters—which
are beyond the scope of this paper.

Primitive Operations. The operations that can be included in the ruling of the
law for a given regulated event e, to be carried out at the home of this event,
are called primitive operations. These operations include the following, informally
specified, ones:

1. Operations on the control-state: These operations update the control-state
of the home agent. They include: (1) +t which adds the term t to the control
state; (2) -t which removes a term2 t, if any; (3) t1←t2 which replaces term
t1 with term t2 (it has no effect if t1 does not exist); (4) incr(t(v),d) which

2Note that a control-state is a bag of terms, so if there are two terms that match t, only one of
them would be removed. Similar “bag-semantics” applies to other operations in this group.
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increments the value of the parameter v of a term t with quantity d (v and d

are assumed here to be integers.); and (5) dcr(t(v),d) which decrements the
value v of a term t with some quantity d.

2. Operations on messages:

—Operation forward(x,m,y), carried out by Cx, sends to controller Cy an
L-message m addressed to y—where x identifies the nominal sender of the
message (“nominal” because x may have not been the sender of this message,
or may have sent a different one—recall that this operation is generated by
the law, which may have a reason to misrepresent reality). When a message
thus forwarded to y arrives at Cy, it would trigger an arrived(x,m,y) event
at it. Note that if y is a list of agents, then a multicast is performed, in a
similar manner.

—Operation deliver(x,m,y) delivers the message m to the home-agent y—not
to the controller of y— where x is the nominal sender of this message. Note
that this operation is generally carried out by Cy, the controller associated
with y itself. But as we shall see in Section 5.2.4, any other controller can
deliver to y, which is called “remote delivery”.

3. Operations on obligations: There are two such operations (imposeObligation
and repealObligation) which will be described in detail in Section 3.1:

2.3 The Law-Enforcement Mechanism

We start with two observations regarding the term “enforcement,” as used here.
First, we do not propose to coerce any agent to exchange L-messages under any law
L—such an exchange is purely voluntary. The role of enforcement here is merely to
ensure that any exchange of L-messages, once undertaken, conforms to law L. Yet,
an agent may be effectively compelled to exchange L-messages, and thus be subject
to law L, if he wishes to use services provided only under this law. For instance,
if the database in our introductory example accepts only BC-messages as queries,
then anybody wishing to use this database would be compelled to send his queries
under this law, and thus be subject to its budget restrictions.

Our second observation has to do with the condition under which conformance
to a law is to be ensured. Broadly speaking, one can distinguish between two types
of potential violations of a given law: (a) inadvertent violations, due to a bug in
the code of an agent, say, or due to its ignorance of the law; and (b) malicious

violations. In this paper we will be concerned with inadvertent violations—which
is a typical software-engineering concern. Enforcement of coordination laws with
respect to malicious violations—which is a security concern—is discussed in [Minsky
and Ungureanu 1998b; Minsky and Ungureanu 1998a]; but we will make some
comments about what such enforcement entails.

The rest of this section is organized as follows: we start by introducing controllers,
which are our main enforcement tools, we then discuss the manner in which con-
trollers mediate L-messages, and we conclude with a discussion of the assurances
provided by LGI.

The Controllers, and their Role. Broadly speaking, the law L of an L-group G is
enforced by a set of trusted agents called controllers, that mediate the exchange of
L-messages between members of the group. Every member x of G has a controller
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Cx assigned to it, which maintains the control-state CSx of its client x. And all
these controllers, which are logically placed between the members of group G and
the communications medium, carry the same law L (as illustrated in Figure 1).
This allows the controller Cx assigned to x to compute the ruling of L for every
event at x, and to carry out this ruling locally.

Controllers are generic, and can interpret and enforce any well formed law. A
controller operates as an independent process, and it may be placed on the same
machine as its client, or on some other machine, anywhere in the network. Un-
der Moses (our current implementation of LGI) each controller can serve several
agents, operating under possibly different laws. This facilitate various optimization
techniques, discussed in Section 5.

The Moses toolkit includes a controller-server, which maintains a set of active
controllers. This server can provides the address of an available controller to any-
body who wishes to engage in LGI. Alternatively, an agent may use a controller on
its own host, if available.

Controller-mediated messages. Here is how the exchange of L-messages gets to
be mediated by controllers, and how this mediation is carried out. Consider a pair
of agents x and y in L-group G, which have controllers Cx and Cy, respectively,
assigned to them. For x to send an L-message m to y, it must send m to Cx. Moses
provides two interfaces for this purpose: (a) a class that allows a Java program to
send and receive L-messages, and (b) an interactive interface that allows a human
agent to do the same from within a web-browser. When a message thus sent by x

arrives at Cx, it triggers a sent(x,m,y) event at it. When Cx picks up this event,
it evaluates the ruling of law L for it with respect to control-state CSx that it
maintains, and carries out this ruling.

If, in particular, the ruling calls for the control-state CSx to be updated, such
update is carried out directly by Cx. And if the ruling for event sent(x,m,y) calls
for message m to be forwarded to y, then Cx would forward m to the controller Cy
instead. When this message arrives at Cy it triggers an arrived(x,m,y) event at
it. Controller Cy would then evaluate and carry out the ruling of the law for this
event. This ruling, in turn, might, in particular, call for m to be delivered to y, and
for the control-state CSy maintained by Cy to be modified.

In general, all regulated events that occur nominally at an agent x actually oc-
cur at its controller Cx. The events pertaining to x are handled sequentially in
chronological order of their occurrence, with priority is given to obligationDue

events (to be discussed later). The controller evaluates the ruling of the law for
each event, and carries out this ruling atomically, so that the sequence of operations
that constitute the ruling for one event do not interleave with those of any other
event occuring at x. Note that a controller might be associated with several agents,
in which case events pertaining to different agents are evaluated concurrently.

Assurances. For this enforcement scheme to be effective one needs the following
assurances: (a) that the exchange of L-messages is mediated by controllers inter-
preting the same law L; and (b) that all these controllers are correctly implemented.
If these two conditions are satisfied, then it immediately follows that if y receives
an L-message from some x, this message must have been sent as an L-message. In
other words, one cannot forge L-messages.
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Fig. 1. Enforcement of the law

Regarding the first of these concerns, to ensure that a message forwarded by
controller Cx under law L would be handled by Cy under the same law, Cx appends
a hash H of law L to the message it forwards to Cy. (The hash of the law is obtained
using one way functions which transforms any string into a considerably smaller
bits sequence with high probability that two strings will not collide [Rivest 1992;
Schneier 1996].) Controller Cy would accept this as a valid L-message only if H is
identical to the hash of its own law.

Let us turn now to the second concern, about the correctness of the controllers:
When not concerned with malicious violations, then one can trust a controller
provided by our controller-server, or a controller provided by the operating system—
just like we often trusts various standard tools on the Internet, such as the e-mail
software or browsers. When malicious violations are a concern, the validity of
controllers, and of the host on which they operate needs to be certified, and the
controller-server mentioned above needs to operate as a certifying authority for
controllers. Also, in this case, messages sent across the network must be digitally
signed by the sending controller, and the signature must be verified by the receiving
controller—allowing the two controllers to trust each other. Such secure inter-
controller interaction has been implemented in Moses ([Minsky and Ungureanu
1998a]).

2.4 The Formulation of Laws

Laws can be quite naturally expressed by mean of any language based on
event-condition-action (ECA) kind of rules. For now, we have chosen a somewhat
restricted version of Prolog [Clocksin and Mellish 1981], due to its expressive power,
and its relatively widespread usage. (The restrictions on the Prolog used here
include that we do not permit such goals as asserta, retract and call.)
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This language will be introduced briefly in this section, and used in the rest of
this paper. We are aware of the drawbacks of this choice, which include longer
time for law-enforcement, and difficulties in reasoning about laws. We plan to
replace Prolog with a simpler and more restrictive language, when this will become
necessary for an application domain. Such a change will be easy to accomplish,
because it requires no other change in the LGI model, and only a minor change in
the Moses toolkit that implements it.

Under the Moses implementation of LGI, then, the law is defined by means
of a Prolog-like program L which, when presented with a goal e, representing a
regulated-event at a given agent x, evaluates it in the context of the control-state
of this agent. This evaluation produces a list R of primitive-operations representing
the ruling of the law for this event. (We assume that program L terminates, for
every possible event. Since there are no automatic means to guarantee termina-
tion of Prolog programs, we do need to rely on the designer of the law to ensure
termination.)

In addition to the standard types of Prolog goals, the body of a rule may contain
two distinguished types of goals that have special roles to play in the interpreta-
tion of the law. These are the sensor-goals , which allow the law to “sense” the
control-state of the home agent, and the do-goals that contribute to the ruling of
the law. A sensor-goal has the form t@CS, where t is any Prolog term. It attempts
to unify term t with each term in the control-state of the home agent. For example,
under law BC, the execution of goal budget(B)@CS would match the budget term
in the home control-state, binding variable B to the budget. A do-goal has the form
do(p), where p is one of the above mentioned primitive-operations. It appends
term p to the ruling of the law. For example, the goal do(+budget(100)) would
add the specified primitive to the ruling.

The ruling of the law is computed as follows. The interpreter of the law maintains
an auxiliary variable R that starts, at the beginning of the evaluation, as an empty
list, and whose value at the conclusion of the evaluation would become the ruling
of law L for the given event e. The list R is constructed by means of do-goals, as
follows: a do-goal do(p) succeeds if the term ”p” is bound to a valid form of a
primitive-operation; if it succeeds then the term p is appended to the list R, as a
tentative contribution of the ruling of the law (tentative, because this contribution
is retractable upon backtracking.) More details about this process is provided
by [Minsky 1991]. We conclude this discussion with several technical details and
conventions, and will then proceed with an example.

Evaluation Context. Just before presenting law L with an event e for evaluation,
the controller instantiates the following Prolog variables, which provide the context
in which the ruling is evaluated.

CS:. The control state of the home object, represented as a list of terms (in
unspecified order).

Msg:. The message being sent or received.

Self:. The name of the home agent.

Peer:. The peer for the current event: the recipient in the case of sent-event,
and the sender in the case of the arrived-event.
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Clock:. The local time at the home controller.

Abbreviations for the Primitives forward and deliver:. The primitive opera-
tion forward(x,m,y) is often abbreviated into forward, which is syntactic sugar
for forward(Self,Msg,Peer). Similarly, operation deliver(x,m,y) is often ab-
breviated into deliver, which means deliver(Peer,Msg,Self).

2.5 The Budgeted Consumption (BC) Law—an Example

We now show how the budgeted consumption policy introduced informally in Sec-
tion 1 can be formalized into a law, and implemented under LGI. Law BC in ques-
tion is specified in Figure 2. This figure starts with the description of the initial
control-state of the various agents. It then lists the rules of this law, each followed
by a comment (in italic), which, together with the following discussion, should be
understandable even for a reader not well versed in Prolog. (The setting of the
initial control-state of agents is discussed in Section 2.6.)

Under law BC, the budget bx of agent x is represented by the value b of the term
budget(b) in the control-state of x. These budgets are initially zero, for every
agent in the group. We start our discussion of this law by showing how budgets
can be allocated and distributed under it. We will then show how database queries
are regulated by means of these budgets.

The budget of an agent under BC can change in several ways. First, an agent
designated as a regulator (by a term role(regulator) in its control-state) can
change the budget of any agent y by an arbitrary integer value v, simply by sending
a message giveBudget(v) to y. The sending of such a message is authorized by
Rule R1, which forwards the message to its destination. By Rule R3, when this
message arrives at y, the budget of y would be incremented by v (it would decrease

if v is negative).
Second, an agent x that has a positive budget in its control state can move part

of it to another agent y. This it can do by sending the message moveBudget(v)

to y. The sending of this message is authorized by Rules R2, which reduces the
budget of x by v units, and then forwards to y the message giveBudget(v) (note
how the law can change a message in flight.) The arrival of this message is (as we
have seen before) regulated by Rule R3, would cause the budget of y to increase
by v.

Thus, it is the regulator that controls the total amount of budget available for
database queries (note that due to the initial state of this group, it has only one
regulator). But the regulator does not need to allocate the budget of every individ-
ual client. It might provide budgets only to a small group of “managers,” expecting
each of them to distribute their budget to their staff, as they see fit. The budget
distribution strategy is not addressed by this law, and is left for the regulator, and
for other agents, to determine. We will return to this point in Section 4.

We turn now to the effect that budgets have on database queries: By Rule R4,
a message request(query) sent by an agent x with budget b, will be forwarded to
its destination only if b is positive; and b would be automatically decremented by
1 when this query is forwarded. When the query arrives at a database server, it is
delivered without further ado (Rule R5). A server is expected to respond to this
request with an appropriate reply, which is not regulated under this law. (Note
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Initially: Every agent has in its control-state a term budget(0); one agent has the term

role(regulator) in its control-state.

R1. sent(regulator,giveBudget(V),Y) :- role(regulator)@CS, integer(V),

do(forward).

A giveBudget(V) message, sent by an agent designated to play the regulator role,
is forwarded to its destination if V is an integer.

R2. sent(X,moveBudget(V),Y) :- integer(V), budget(B)@CS,

V>=0, B>=V,

do(dcr(budget(B),V)),

do(forward(X,giveBudget(V),Y)).

A moveBudget(V) message sent by anybody is forwarded to its destination, if the
budget of sender is no smaller than V, which must be positive; the budget of the
sender is automatically decreased by V, and a giveBudget(V) is forwarded to Y.

R3. arrived(X,giveBudget(V),Y) :- budget(B)@CS,

do(incr(budget(B),V)),

do(deliver).

The arrival of an giveBudget(V) message causes the increase by V of the value B

held in the budget term; this message is also delivered to the receiver in order to
inform him of the increase.

R4. sent(X,request(Query),D) :- budget(B)@CS, B > 0,

do(dcr(budget(B),1)),

do(forward).

A request(Query)message is forwarded only if the sender holds in the budget term
a positive B. The value of B is decreased by one.

R5. arrived(X,request(Query),D) :- do(deliver).

A request message arriving at the destination is delivered without further ado.

Fig. 2. The Budgeted Consumption Law BC

that this law does not actually ensure that a query can be sent and delivered only
to a database server. This would be easy to do, but seems not to be needed here,
because clients are not likely to send queries to other agents, thus losing part of
their budget without any return.)

In accordance with our principles of coordination in open groups, the BC policy
is enforced, and does not rely on the voluntary compliance of individual agents.
Moreover, BC is enforced locally, at each agent, and is therefore quite scalable.
We will elaborate on this example in Section 3, making it more robust and fault
tolerant, using additional features of LGI.

2.6 The Deployment of L-Groups

A new L-group G is established by starting up a secretary SG which maintains: (a)
the law L of G; (b) the list of its initial members, with their initial control-states;
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Fig. 3. Deployment of an L-group: (a) agent x asks the controller-server for a
controller—it gets Cx in this case; (b) agent x asks SG , the secretary of group G,
to become an active member—causing Cx to be loaded with L, the law of group G,
and the control-state of x; (c) x can start communicating with another member y
operating under the same law.

and (c) the initial control-state to be assigned to new members that might join
the group during its lifetime. In the case of BC-group, in particular, one may have
only a single initial member, whose initial control-state would consist of the term
role(regulator), and the control-state of new members would consist of the term
budget(0). (This setting is summarized in the “Initially” clause of Figure 2.)

For an agent x to be able to exchange L-messages under a law L, it needs to
engage in a two-step connection protocol, illustrated by Figure 3. First, x must
employ a generic controller Cx, that knows nothing about any particular policy.
This may be done by sending a message to an agent called controller-server that
operates as a trusted name-server for controllers. Alternatively, x may have a
controller available on its own host, or at its own LAN.

The second step is to join the group by sending a connect request to the secretary
SG . In this request x must identify its controller Cx, and the name m of the member it
wants to animate (i.e., to operate as the agent of). The secretary might attempt to
authenticate agent x (via a password) and its chosen controller (via a certificate), if
authentication is required for this particular group. Once this is done, the secretary
would proceed as follows: (a) it would provide Cx with law L; and (b) it would send
Cx the initial control-state CSx to be assigned to x.

This control-state is determined as follows: If x asks to animate one the initial
members of the group, it will get the designated initial control-state of this member.
For example, if x asks to animate the regulator, of our BC-group, it will get the term
role(regulator) in its control-state. If, on the other hand, x asked to animate a
new member of this group, it will get the control-state designated by the secretary
for new members—which, for our BC-group, consists of the term budget(0).

Once x is thus engaged in an L-group, it can exchange L-messages with other
members of this group, whose name and address is provided by the secretary; such
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an exchange is mediated by the controllers of each member, and does not involve
the secretary SG . To carry out such an exchange, an agents needs to the interfaces
provided by Moses for this purpose (see the following section), so it must be aware
of its participation in an L-group interaction. Note, however, that we are working
now on allowing the kernel of an operating system to intercept regular messages,
subjecting some of them to the ruling of a specified law law L. The main purpose
of such interception would be to subject certain COTS (commercial of the shelf)
components to certain laws.

Note also that a member of an L-group does not have to be familiar with the
details of law L itself, although it might need to be aware of certain aspects of this
law, to operate effectively. In the case of an BC-group, for example the clients need
to understand the law-based concept of budget, in order to plan their actions.

2.7 The Moses Toolkit

The Moses toolkit consists of the following components, written mostly in Java:

—The controller.

—Two kinds of interfaces between agents and controllers: one for a human agents,
operating via a web-browser, and one for Java programs.

—The secretary, which is needed only for explicit L-groups.

—A controller server that maintains information about active controllers, through-
out the Internet. (One may have any number of such servers.)

3. ADDITIONAL FEATURES OF LGI

In this section we introduce two additional features of LGI, which enhance its
expressive power and its usefulness considerably. The first is a concept of obligation,
which allows us to write laws that ensure liveness properties, among other things.
The second feature is a concept of exception, which helps to write more robust and
fault tolerant laws. Note that LGI has some other important features, mention
briefly in the conclusion, which are beyond the scope of this paper.

3.1 The Concept of enforced obligation

So far, our concept of law has been purely reactive. That is, it prescribes what
should be done in response to sent and arrived events, but it cannot initiate any
action on its own. To see the need for a more pro-active role for laws, consider
the following problem with our BC law: an agent x invested with a given budget
might actually not need it, or might be busy with other things for a while—so that
the budget of x is left unused for a long period of time, while other agents might
be starving for some query-budget. To help utilize such unused budgets, one may
want to employ the following amendment to policy BC:

If a client x does not issue any query for a certain period of time (say, 10
seconds) it must give up its query budget, by sending it to the regulator.
(Thus amended, our policy is called BC′.)

One can ensure that unused budgets are returned in time, as is required by this
policy, by means of the concept of enforced obligation (or, obligation, for short)
presented below:
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Informally speaking, an obligation incurred by a given agent serves as a kind of
motive force, which ensures that a certain action (called sanction) is carried out at
this agent, at a specified time in the future (the deadline) when the obligation is
said to come due, provided that certain conditions on the control state of the agent
are satisfied at that time. The circumstances under which an agent may incur an
obligation, the treatment of pending obligations, and the nature of the sanctions,
are all governed by the law of the group.

Specifically, suppose that at time t0, an agent x incurs an obligation by the
execution at x of a primitive operation

imposeObligation(oType,dt)

where dt is the time period, expressed in seconds, after which the obligation is to
come due; and oType—the obligation type—is a term that identifies this obligation
(not necessarily in a unique way). The main effect of this operation is that unless
the specified obligation is repealed (see below) before time t = t0 +dt, the regulated

event

obligationDue(oType)

would occur at agent x at time t. The occurrence of this event would cause the
controller to carry out the ruling of the law for this event; this ruling is thus the
sanction for this obligation. (Note that all the times here are defined by the local
clock of agent x.)

A pending obligation incurred by agent x can be repealed before its due time by
means of the primitive operation

repealObligation(oType)

carried out at x, as part of a ruling of some event. This operation actually repeals
all pending obligations of type oType. We have more to say about this concept,
after we illustrate its use with an example.

The BC′ Law—Illustrating the Use of Obligations. Our amendment to the BC law
is implemented by replacing RulesR3 andR4 from Figure 2 with RulesR3′ andR4′,
and by adding Rule R6. These rules, displayed in Figure 4, operate as follows.

By Rule R3′, whenever x receives an giveBudget message, an obligation
returnBudget is imposed on it, with a deadline of 10 seconds. The general effect
of this obligation is that if during a period of 10 seconds this agent made no queries
then its budget would be taken away from it. When the agent does make a query
then this obligation would be replaced with a new one that would come due, again,
in 10 seconds.

More specifically, if this obligation will come due—i.e., if it is not repealed, as
under Rule R4′—its sanction (by Rule R6) would be to forward to the regulator

a giveBudget(b) message, where b is the value of x’s budget, and to change the
value of x’s budget to 0. In other words, x is forced to give away its budget to the
regulator. (We assume here, for simplicity, that the agent which plays the role of
regulator is also called “regulator”).

Second, by Rule R4′, if an agent x issues a request for one of the database
servers, and if it has a positive balance in its budget, then its pending returnBudget

obligations are repealed (an agent might have several such obligations, because
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it incurs one each time it receive some budget), because x thus complies with
obligation to use his budget within the alloted time period. Second, to ensure that
x will observe our law in the next time frame, a new obligation returnBudget is
imposed, to come due in 10 seconds. Finally, the budget is decremented and the
query is forwarded, as before.

R3
′
. arrived(X,giveBudget(V),Y) :- budget(B)@CS,

do(incr(budget(B),V)),

do(imposeObligation(returnBudget,10),

do(deliver).

The arrival of a giveBudget(V) imposes an obligation returnBudget, to come due
in 10 seconds (this, in addition previous effects described by Rule R3).

R4
′
. sent(X,request(Query),D) :- budget(B)@CS, B > 0,

do(repealObligation(returnBudget)),

do(imposeObligation(returnBudget,10)),

do(dcr(budget(B),1)),

do(forward).

If the sender a request(Query) message holds a positive budget, then this message
is forwarded, and the budget is decreased by one. Also, all existing returnBudget

obligations are repealed and a another returnBudget obligation is set to come due
in 10 seconds.

R6. obligationDue(returnBudget) :- budget(B)@CS, B != 0,

do(budget(B) ←budget(0)),

do(forward(Self,giveBudget(B),regulator)).

When an obligation(returnBudget) comes due, a message giveBudget(B) will be
sent to the regulator, where B is the value of the budget term. Also, the value of
X’s budget is changed to 0.

Fig. 4. Rules of law BC′ dealing with unused budget

Obligation in Deontic Logic. Conventional deontic logic [Meyer et al. 1998; Brown
1998; Kent et al. 1993; S. 1993], designed for the specification of normative systems,
is based on a related concept of obligation. The deontic concept of obligation allows
one to reason about what an agent must do, but it provides no means for ensuring
that what needs to be done will actually be done [Roscheisen and Winograd 1996].
Such obligations, have been used, in particular, for the specification of policies for
financial enterprises [Linington 1999]—but unlike our obligations, they provide no
direct help in the enforcement of such policies.

Further Details of Obligations. The following details provide a completion of our
concept of obligation, which may be skipped in first reading.

A secondary effect of an imposeObligation(oType,dt) operation is that the
term obligation(oType,t0,dt) is added to CSx, where t0 is the time when this
operation has been executed. This term is used as the indication that agent x

has a pending obligation of the specified type and deadline, and it is removed



www.manaraa.com

Law-Governed Interaction · 17

automatically when the associated obligationDue event occurs. It is also removed
by the execution of any repealObligation(oType) operation. But an obligation

term cannot be added, removed or changed directly by update operations on the
control-state.

The result of all this is the following invariant: an obligation of type oType on
agent x, which is set at time t0 to fire in dt seconds, is always accompanied by the
term obligation(oType,t0,dt) in the control-state of x. This property provides
the law with the very important ability to ”introspect” on the current set of pending
obligations, by examining the obligation-terms.

Another role of obligation-terms is to specify initial obligations of agents. This
is done as follows: A term obligation(oType,0,dt) in the initial control-state of
an agent x means that an obligationDue(oType) event is to be triggered at x, dt
seconds after x started operating. Accordingly, the following actions will take place
if an agent x, having in its initial control state a term obligation(oType,0,dt),
is launched at time t0: (a) the term obligation(oType,0,dt) is removed, and
(b) primitive imposeObligation(oType,dt) is executed at time t0. For the use of
this capability see the token-ring example in [Minsky et al. 1996].

Finally, we offer the following details about the execution of incurred obligation:

—Events are evaluated in chronological order (of arrival times); in case of a tie,
the evaluation of an obligationDue event takes precedence over other types of
events. If multiple obligations come due at the same time, they are evaluated in
some unspecified order.

—When an obligationDue event occurs, no values are bound to Msg or Peer, for
obvious reasons; however, Self is defined as always.

3.2 Exceptions

Primitive operations that require communication with other agents, like deliver

and forward, may end up not being able to fulfill their intended function. For
example, the destination agent of a forward operation may fail by the time the
forwarded message arrives at it. To deal with this problem, we introduce a regulated
event called an exception, which is triggered when a primitive operation cannot
be completed successfully—and it is up to the law to prescribe what should be done
to recover from such an exception. The syntax of an exception event is:

exception(primitiveOperation, failureCause)

where primitiveOperation is the primitive operation that could not be completed,
and failureCause is a string describing the reason of the failure. The home of the
exception event is the home of the event which attempted to carry out the failed
primitiveOperation. For instance, if a message m, sent on behalf of member x,
cannot be delivered to its destination y, then an event

exception(deliver(x,m,y),’’destination not responding’’)

would be triggered at x.

The BC′′ Law—Illustrating the Use of Exceptions. Consider again the issue of fair
distribution of budgets among clients of the database. The previous amendment of
law BC ensured that only agents constantly using the database keep their budgets.
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Another aspect of this issue is to guarantee that quantities of budget are not lost in
the distribution process. Consider an agent x who sent a giveBudget(v) message
to another agent y, and suppose that y’s controller, or the network, failed and the
message cannot be forwarded. Then v units of budget would be lost, without a
trace. What one would like in this case is to ensure the following property:

If a giveBudget message cannot be forwarded, then the sender’s budget
is restored.

This can be accomplished by adding Rule R7, presented in Figure 5, to law BC′,
thus establishing a variant BC′′ of our law. This rule deals with the exception
that is triggered when the giveBudget(v) message sent by an agent x cannot be
forwarded to y. The ruling for this exception is to restore x’s budget by increasing
it by v; and to notify x by delivering an appropriate memo to it.

R7. exception(forward(X,giveBudget(V),Y)),FailureCause) :- budget(B)@CS,

do(incr(budget(B),V)),

do(deliver(memo(FailureCause)).

If an exception is raised because a giveBudget message sent by an agent X cannot
be forwarded to Y, then X’s budget is restored, and an appropriate memo is delivered
to X.

Fig. 5. Dealing with Lost Budget

4. THE USAGE OF LGI, AND ITS EXPRESSIVE POWER

Research on coordination was largely motivated by the conviction that when dealing
with a distributed or parallel system, it is useful to distinguish between the com-
putation carried out by individual components, and the communication between
these components, which is sometimes called the coordination protocol [Carriero
and Gelernter 1992]. Our concept of law is related to such protocols, but not iden-
tical to them. The law under LGI is not intended to specify all the details of the
coordination between the members of a given group—it is merely a constraint over
such a protocol.

For example, the law of a BC-group defines the means for transferring quantities
of budgets between agents, which ensures conservation of the total budget provided
by the regulator—leaving it up to individuals agents to decide when to carry out
such a transfer, and to whom.

It is not always clear which aspect of a given coordination protocol should be
formulated as a law, and which should be left for individual agents. But as a general
rule, any policy that is critical for the coordination, and which can be violated by
several different agents, needs to be ensured by means of a law. In the case of the
BC-group, for example, the meaning of budgets, as currency for interaction with
the database, and the conservation of such budgets when moved from one agent
to another, are formulated by law BC because they can be reasonably considered
critical, and because they can be violated by any agent if not ensured by a law.

Of course, not every policy deemed to be critical can be thus assured by a law,
because LGI deals only with the exchange of message between agents, and is not
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sensitive to the internal behavior of agents, and to changes in their internal state.
For a sense of the kind of policies that can be usefully made into laws under LGI,
we provide at the end of this section a brief overview of the applications of LGI
that we already explored.

In general, LGI is most effective for policies that are naturally local. That is, poli-
cies that deal with the individual behavior of agent, requiring little or no knowledge
of the state of other agents. It is for such policies that LGI is truly scalable, and
most efficient (as discussed in Section 5.1). But LGI can be used for non-local
policies as well. Detailed examples of implementation of such policies under LGI
include confidential electronic voting [Minsky and Ungureanu 1997], and access-
control for tuple-spaces [Minsky et al. 2000b]. In fact, as we show next, the set of
policies that can be established by means of laws under LGI is at least as large as
the set of policies that can be established using a centralized control mechanism
(CCM)—and the efficiency of the LGI implementation is comparable to, or better
than, the CCM implementation.

Comparing the expressive power of LGI to that of CCM. A centralized coor-
dination mechanism (CCM) operates, essentially, as follows: Consider a set S of
participants in a certain interactive activity that needs to be coordinated. Suppose
that all messages sent by one participant to another are (somehow) intercepted, and
rerouted to a coordinator C, for disposition. The response of the coordinator re-
garding each such message can be sensitive to the history of participants activities,
as far as this is known to C from the intercepted messages.

Such a mechanism can be implemented under LGI as follows: Let the members
of a group G consists of the set of participants S, and an agent C’ whose role here
is analogous to that of C, under CCM. For any policy P that can be implemented
under CCM above, we can write a law L such that: (a) every L-message sent by a
participant is rerouted to C’: (b) every bit of information about the history of the
activities of members of S, maintained by the coordinator C, is also maintained by
C’; and (c) the ruling of law L, carried out by C’ for a message thus arriving from
a participant, is identical to the ruling of P carried out by C. (Our ability to do so
depends only on the expressive power of the language used to write laws, which is
virtually unlimited in the case of Prolog).

So, any policy that can be implemented under CCM can also be implemented
under LGI. The opposite is not quite true. What cannot be regulated under CCM
is the flow of messages sent by participants, and rerouted to the coordinator. This
means, in particular, that CCM cannot protect the coordinator itself against con-
gestion due to some overactive participants which may lead to denial of service (the
perilous effects of such congestion has been described in [Needham 1994]). Under
LGI, on the other hand, the law may limit the frequency of messages that can be
issued by any given participant—and this limit can be locally enforced, and is, thus,
less susceptible to congestion.

A sample of application of LGI. To provide some feel for the range of policies
that can be practically established under LGI, we mention here some applications
of LGI that have been studied, and most of them published elsewhere.

First, we experimented with many coordination laws, including a sophisticated
token-ring protocol that ensure liveness of the token [Minsky et al. 1996], and a law
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that provides for confidential electronic voting [Minsky and Ungureanu 1997].
Second, we addressed the issue of dynamic reconfiguration of distributed systems,

while they are running, with the following result: Given a class of reconfigurations
R, deemed to be potentially important for a given system, it is sometimes possible
to write a law that provides a suite of primitive mutations of the system that
can be used to carry out any of the reconfigurations in R, in an ad-hoc but safe
manner [Minsky et al. 1996].

Third, we addressed the issue of access control [Minsky and Ungureanu 1998b].
We demonstrated that LGI can be used to support efficiently, and in a unified man-
ner, a wide range of access control policies, including: conventional discretionary

policies, mandatory lattice-based access control policies, and the more sophisti-
cated policies required for commercial applications, such as the “Chinese Wall”
policy [Brewer and Nash 1989], in distributed context, which is notoriously difficult
to implement by traditional means. Another use of LGI has been as an access
control mechanism for Linda-like tuple-spaces, where conventional access control
schemes are inadequate [Minsky et al. 2000b; Minsky et al. 2000a].

Finally, we began exploring the emerging field of electronic commerce [Minsky
and Ungureanu 1998a]. A commercial policy can be viewed as the embodiment of
a contract between the principals involved in a certain type of commercial activity,
and it may be concerned with such issues as: ensuring that a payment for services is
refunded under specified circumstances; preventing certificates representing e-cash
from being duplicated; ensuring that credit card numbers are used only for the
transaction they are intended for; and, for certain socially sensitive transactions
like the purchase of drugs, ensuring auditability by proper authorities. We have
experimented with examples of all such policies. Our latest work in this field uses
LGI to regulate agent involvement in inter-enterprise commerce [Gal et al. 1999].

5. ON THE EFFICIENCY OF LGI

As a gauge for the efficiency of LGI we will use the relative overhead rox,y of
transmitting an LGI message from x to y. We define this quantity to be the
overhead incurred when transmitting an LGI message (i.e., the difference between
the transfer time of the LGI message and the corresponding unregulated (TCP/IP,
say) message), divided by the transfer time of the unregulated message.

We will evaluate the relative overhead (ro) of LGI under various conditions,
comparing these results with the corresponding relative overhead of message passing
under conventional centralized coordination mechanisms (CCM).

The general picture that emerges from this section is as follows: LGI com-
munication should be quite affordable, and is generally more efficient than CCM
communication—dramatically more efficient, in most cases. To be more specific:
For communication across WAN (wide area network), the relative overhead (ro) of
LGI is expected to be around 0.02 in most cases, which reflects quite a negligible
cost. For comparison, the ro for CCM, is generally around 1, and could grow much
higher when the central coordinator becomes congested. LGI is less efficient when
security is at stake, but it is still comparable with CCM.

As for communication within a LAN (local area network), the expected relative
overhead of LGI is between 0.2 and 0.4, depending on circumstances—significantly
higher than over a WAN. But this should be compared with centralized coordination
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within LAN, whose ro is estimated to be 1.4—three times as much as under LGI,
and subject to congestion, to boot.

We start this section with an analysis of the structure of relative overhead of
LGI, and of CCM; we also discuss the scalability of both mechanisms, when the
frequency of messages exchanged between members of a group grows. In Section 5.2
we evaluate the relative overhead under various conditions, mostly focusing on WAN
communication. Finally, in Section 5.3, we report on the testing of the performance
(efficiency and robustness) of our current prototype implementation of Moses.

5.1 An Analysis of the Relative Overhead of LGI

Consider a message m sent by an agent x to a destination y. If the interaction
between the two agents is mediated by controllers in the manner described in Sec-
tion 2.3, then this message would be converted to three consecutive messages: (1)
from x to Cx, (2) from Cx to Cy, and (3) from Cy to y. The overhead ox,y, due to the
extra messages and the law-evaluations involved, is given by the following formula:

ox,y = (tx,Cx

com + tsent
eval + tCx,Cy

com + tarrived
eval + tCy,y

com ) − tx,y
com (1)

where teeval is the time it takes a controller to compute and carry out the ruling
for event e, and ta,b

com is the communication time from a to b. (Note that some
components of this formula can be eliminated under certain circumstances, as we
shall see below.) The relative overhead rox,y of an LGI message from x to y—
relative to the unregulated transmission of such a message—is defined as:

rox,y = ox,y/tx,y
com (2)

For comparison, the relative overhead under centralized coordination (CCM), is
given by the following formula:

roCC
x,y = oCC

x,y /tx,y
com = ((tx,C

com + tCeval + tC,y
com) − tx,y

com)/tx,y
com (3)

where the superscript C stands for the central coordinator under CCM, and the
superscript CC denotes CCM itself.

Typical values. When evaluating these formulae under various conditions we will
use the following approximations, and typical values, for the quantities involved in
them.

—Typical communication times ta,b
com. These times depend on many factors,

including the length of message, the communication protocol being used, and
the distance between the communicating parties. We will ignore many of these
factors, and distinguish only between the following three quantities: (We specify,
within parenthesis, the typical value we will be using for each of them.)
1. tpipe (≈ 0.1 ms): the communication time via a pipe, for a and b that reside

on the same machine.
2. tLAN (≈ 5ms): the TCP/IP communication time, for for a and b that reside

in the same LAN.
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3. tWAN (≈ 100ms): the TCP/IP communication time, for for a and b that
reside in different LANs.

—Typical evaluation times teeval. We ignore dependency on the event e, and on
the law, and will use only two values:
1. teval (≈ 1ms): the evaluation time for an arbitrary event, by a controller

dedicated to the home of this event. (Our current, experimental, controllers,
the evaluation time is 3.5ms; the figure of 1 ms used here is based on a very
conservative expectation, explained in Section 5.3, about a performance of
tighter controller, built with a more efficient Java.)

2. tCeval (≈ 2ms): the expected evaluation time by an uncongested central-
coordinator, which we take to be twice teval. (This is the case for a Moses
controller, when it is shared by the sender and the receiver of a message; but
we expect any central coordinator to be more complex, and thus less efficient
than a local one.)

On Congestion and Scalability. The values cited above for teval and tCeval are
for uncongested controllers. Obviously, when a controller is congested, its effective
evaluation time, i.e., the latency for an event to be evaluated, can grow boundlessly.
We examine here is the vulnerability to congestion of LGI and of CCM. We start
with CCM.

With tCeval = 2ms, the central coordinator C will be congested when the frequency
of messages exchanged between members of the group is larger than 500 per second.
Such congestion would effect the latency of every message within the group, as all
of them are mediated by C.

To understand the vulnerability of controllers under LGI to congestion, let us
first make the following assumptions: (a) there are n members in the group, each
with its own controller; and (b) the exchange of messages is uniform, so that each
controller has to handle the same number of messages (in unit of time). Since each
message generates a pair of regulated events under LGI, and given teval = 1ms, it
follows that the controllers will be congested only when the frequency of messages
exchanged between the members of the group is larger that 500n. That is, the
volume of message that can be handled by LGI, without congestion, is larger by a
factor of n than under CCM.

This is one sense in which LGI is more scalable then CCM. Another sense emerges
when we drop the uniformity assumption above. If an agent x sends or receives a
lot of messages then its own controller will be congested if the frequency of these
messages is larger than 1000 messages/second. But this congestion will effect only

x itself and possibly some of its interlocutors, but nobody else. Under CCM, on the
other hand, everybody is affected by the congestion of C, so that one overactive
agent is able to slow down the entire group.

The relative overhead of centralized coordination. Using the typical values cited
above, let us evaluate the relative overhead of conventional CCM, when there is no
congestion: First, for communication across WAN, we plug tWAN into Equation 3,
which yields:

roCC
x,y = (tWAN + tCeval)/tWAN ≈ 1 (4)
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The result of 1 for ro in this case is a good approximation as long as the controller
C is not congested, and its evaluation time is around 2 ms, which is much smaller
than tWAN . The corresponding result for centralized coordination within a LAN,
obtained by replacing our value for tWAN with that for tLAN , is 1.4.

These two values for the ro of uncongested centralized coordination—1.0 for
WAN, and 1.4 for LAN—can be used as benchmarks, with which the relative over-
head of LGI can be compared.

5.2 The Relative Overhead of LGI, Under Various Conditions

The LGI model is silent on the placement of controllers vis-a-vis the agents they
serve, and it allows for the sharing of a single controller by several agents. This
provides us with flexibilities, which can often be used to minimize the overhead of
LGI under various conditions. Also, the structure of the law itself can sometimes
be used to reduce the overhead of LGI, by bypassing one of the controllers. We
will consider here in detail the effect of these factors on the relative overhead of
LGI across WAN, and we will also mention the corresponding results for LAN
communication.

5.2.1 Using Local Controllers. Perhaps the most natural way to use LGI, and
usually the most efficient one, is to place each controller Cx at the host machine
of agent x itself, as illustrated in part (a) of Figure 6. This allows each agent to
communicate with its controller via pipes, which is substantially more efficient then
TCP communication. Applying Equations 2 and 1 to this situation and using our
typical values, yields the following result for relative overhead:

rox,y = (2 ∗ teval + 2 ∗ tpipe)/tWAN ≈ .02 (5)

The corresponding result for relative overhead of LGI within a LAN would be
0.4. This is not quite as negligible as in the WAN case, but still affordable, and
substantially smaller than the ro of centralized coordination within LAN, which we
have already calculated as 1.4.

(a) (b)

x L

Cx

L y
Cy

L

Cx

L

Cy

x y

Legend:
pipe communication

             WAN communication

Fig. 6. Placement of controllers:(a) on the same machine as the agent: (b) remote
(across a WAN).
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5.2.2 Using Remote Controllers. Local controllers should not be used when one
is concerned about a controller being tempered with by its client. To enhance the
security of LGI communication it would be appropriate to use controllers main-
tained by some kind of trusted authority, as explained in [Minsky and Ungureanu
1998a]. Such controllers would generally not reside in the LAN of their clients, or
of each other, but might be anywhere in the Internet, as illustrated in part (b) of
Figure 6.

To compute the relative overhead of such communication, we plug tWAN for
every communication time in Equation 1. This yields the following result for the
relative overhead in this case:

rox,y = (2 ∗ tWAN + 2 ∗ teval)/tWAN ≈ 2 (6)

The last step is justified by the fact that teval is numerically so much smaller than
tWAN .

This is twice as large as the relative overhead of uncongested central coordinator
(see Equation 4). However, as we shall see in the following section, even when
security is an issue it is often possible, to reduce this overhead by exploiting the
ability of several agents to share a single controller.

5.2.3 Sharing Controllers. Suppose that a single controller c is assigned to both
x and y. The processing, with such a controller, of a regulated message from x to y
is illustrated in part (a) of Figure 7. The controller-to-controller message disappears
now, but we still have two evaluations of the law, one for the sent-event and one for
arrived-event3. As such, this placement scheme requires only one more TCP/IP
message than required by unregulated message passing. Our formula for relative
overhead would now yield

rox,y = (tWAN + 2 ∗ teval)/tWAN ≈ 1 (7)

just as under centralized coordination.
Of course, this would not help with the communication of agent x with some

other agent z, unless z is also assigned to controller c. One can, of course, emulate
centralized coordination by assigning one controller c to all members of an L-group.
This will have the same overhead as a central coordinator, but will be equally
unscalable.

Alternatively, one can adopt a semi-centralized controller-assignment strategy,
assigning a single controller to a moderately sized cluster of agents that interact
mainly between themselves. The relative overhead would then be 1 for inter-cluster
communication, and 2 for intra-cluster communication—and the whole arrange-
ment would be moderately scalable. In principle, such assignment of controllers to
agents can be adjusted dynamically, adapting it to current communication patterns.
However, the present implementation of Moses provides for only static assignment
of controllers, so we did not experiment with dynamic adjustments.

3Controller-sharing works as follows: each controller maintains a table with with all agents cur-
rently assigned to it. When a controller has to forward a message m to an agent y, it first looks

for y in the table of assigned members. If the look-up is successful, the controller simply places
the corresponding arrived-event in the y’s queue.
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deliver(x,request(q),y)

L

client x server y

       Cx         Cy

L

request(q)

(a) (b)

CSx CSy

L

member x

controller c

 member y

CSx CSy

L

Fig. 7. Using a single controller: (a) Agents x and y share the same controller
c; (b) Bypassing a controller: message request(q) is directly delivered to the
database server.

5.2.4 Bypassing a Controller. So far we had each message from x to y generate
two controlled events, sent and arrived, which were evaluated by the controller
assigned to x and to y, respectively. We have just seen, that if we assign one
controller to both agents, we save a controller-controller communication, but still
have two law- evaluations to perform. Here we will see that in some cases it is
possible to bypass a controller altogether, resulting in a bigger saving still.

This is possible when dealing with a law L that prescribes that when a message
m sent by x arrives at y, it is to be delivered to y without having any other effect,
and independently of the control-state of y. With such a law, the controller of y
can be bypassed by having the controller of x deliver message m directly to y itself,
thus reducing the overhead by one message passing and one law-evaluation.

An example of this situation is provided by our BC law, which prescribes that
any message arriving at a database server is to be delivered without further ado.
The server’s controller can be bypassed in this case simply by replacing the pair of
rules R4 and R5 in Figure 2 with the following rule:

R4
′′
. sent(X,request(Query),D) :- budget(B)@CS, B > 0,

do(dcr(budget(B),1)),

do(deliver(X,request(Query),D)).

This rule calls for the request to be delivered directly to the database server d

by the client’s controller Cx, bypassing the server’s controller, as shown in part (b)
of Figure 6. This reduces the overhead by one message and one law evaluation.
Assuming that the controller of x is local we get the following result for relative
overhead for WAN communication.

rox,y = (tWAN + teval)/tWAN ≈ .01 (8)

The corresponding result for LAN communication is 0.2.
Finally, we note that in many cases it should be possible to detect automatically,

from the law in question, that the destination-controller can be bypassed. It would
then not be necessary to change the law manually to perform a remote delivery,
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as we have done above. But the present version of Moses does not perform such
optimization automatically.

5.3 On the Performance of the Current Moses Toolkit

The current implementation of Moses, which has been tested on Solaris and Win-
dows NT platforms, is experimental and much less efficient than it can be—the
present teval is approximately 3.5 ms. As already pointed out, we expect future
versions of the controller to be much faster, in the following ways: First, by com-
piling the controller, rather than interpreting it. The development of good Java
compilers is underway in many places, and is expected to achieve near native per-
formance [Halfhill 1998]. This factor alone should reduce teval by a factor of 3 or
4 [Fitzgerald et al. 1999].

Second, the performance of our controllers should be improved significantly with
the advent of better implementation of Java core libraries. In particular, it has
been recently shown in [Heydon and Najork 1999] that excessive synchronization
performed by low level classes can lead to a substantial performance degradation.
For example, some of the I/O classes are synchronized. Since each such call re-
quires a lock acquisition, the controller is spending much of its time acquiring
locks for objects that are (usually) used by only one thread. This situation can
be easily solved by providing both synchronized and unsynchronized versions for
different classes.) Another cause of performance degradation is excessive heap al-
location [Klemm 1999; Halfhill 1998] which in turn leads to more time spent doing
garbage collection.

Finally, we expect to replace Prolog as a language for writing laws with a simpler
language to interpret. All told, we believe that our expectation for teval to become
1ms is quite conservative.

Experimental Results. We have conducted many experiments with Moses, in a
variety of configurations. Most of these experiments are difficult to summarize
neatly because of the large variations in communication times. But they generally
conform to the predictions in Section 5.2, when the value of 3.5ms is used for teval.
We report here in detail only our measurement of the performance of the controller
itself.

We have carried out a series of experiments aimed to measure the controller
performance per se, in isolation of other factors like network load or the response
time of different agents. We were particularly interested in the robustness of the
controller, when it has to deal with many different clients, and with many events. In
order to do so, we measured the average throughput of a controller, i.e., the number
of processed events per second, as a function of the number of clients handled by the
controller. Specifically, we used events of the form sent(ci,request(query),sj)

where ci and sj are members in BC-group. The experiment was conducted on a
SUNW, Ultra-2 machine operating at 296 MHz, using Solaris 2.6 operating system
and Java 1.2.

The experiment consists of several runs. In each run ne sent events are processed,
and the throughput is computed as ne/tp, where tp is the real time it took the
controller to process these events. Variant in the runs is n, the number of clients
assigned to the controller (each ci appears as sender in ne/n sent events).
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Fig. 8. The performance of a controller under a heavy load

Figure 8 shows the results of the experiment with n ranging between 1 and 10,
and ne=3000. The experiment shows significant variations in the throughput with
the number of clients which varies between 290 events/s and 390 events/s. This gain
in performance is due to the controller capacity to parallelize tasks: if all messages
originate from a single member the evaluation of events is strictly sequential. If
messages are sent by different agents, their evaluation proceeds in parallel.

The best performance of the controller is reached for n= 5; when the number
of agents assigned to a controller is increased further, the bookkeeping time offsets
some of the parallelism gain. The experiment shows, though, that the controller
performs well even for large number of agents: for example, if there are 10 clients
assigned to the controller the deprecation in performance is less than 10%.

6. RELATED WORK

There has been a growing interest in coordination in recent years, and a variety
of different, and quite powerful, coordination mechanisms have been devised. We
provide here a short overview of these mechanisms, and we conclude by placing this
paper in the context of previous work by the authors.

To the best of our knowledge, none of the coordination mechanisms proposed so
far, satisfies our three principles for coordination in open groups. This is not sur-
prising, as most coordination mechanisms have been devised for close-knit groups,
generally written in a single language, and spawned by a single program, which
do not require all these three principles. This is certainly true for Linda [Carriero
and Gelernter 1992], one of the first, and most influential, explicit attempts at
coordination. Linda features very powerful and elegant coordination primitives,
but it provides for no explicit statement of a policy. So, if a group of agents are
to coordinate effectively via a tuple-space (a basic Linda concept) they all need
to internalize some kind of common policy. (Many Linda-based mechanisms, like
Sonia [Banville 1996], for example, share this property of Linda.) Of course, no
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such internalization can be relied on in an open group—which is the reason for our
first and third principles.

There is a collection of mechanisms that do provide for an explicit coordination
policy, but only for groups of agents spawned by a single program or, at least,
written in a specific language. These techniques are not applicable to open groups,
in our sense of this term, where the group members may have been written inde-
pendently, possibly in different languages. Some of these mechanisms, including
Actors [Frolund and Agha 1993; Agha 1997], Contracts [Holland 1993], and Com-
position Filters [Aksit et al. 1993], do not depend on centralized control and are
thus, potentially scalable. Others, like Gamma and the Chemical Reaction Model
[Banatre and Le Metayer 1996], LO [Andreoli 1996], and COOLL [Castellani and
Ciancarini 1996], do not concern themselves with scalability, and rely on centralized
coordinators or on broadcasting.

But even the few mechanisms that have been specifically designed for open sys-
tems, did not adopt all our principles, possible because they used a different def-
inition of openness. We will cite here two such coordination mechanisms . First,
Objective Linda (OL) [Kielmann 1996] attempted to adapt Linda for open systems,
mostly by introducing a hierarchy of object spaces, which provides a degree of ac-
cess control. However, like Linda, OL does not provide for the specification of an
explicit policy that govern the interaction of agents with the tuple spaces. This is
clearly unsuitable for an heterogeneous group, whose members are not familiar with
each other, and cannot be trusted to internalize a common set of rules. Another
coordination mechanism intended for open groups is Coordination Language Facil-
ity (CLF) [Andreoli et al. 1998]. Coordination is carried out in CLF by means of
a central coordinator. This coordinator performs sophisticated atomic negotiation
protocol, by sending out instruction to the group members (called “participants”),
so that part of the coordination is carried out in a non-centralized manner. But
CLF provides no assurances that the participants actually carry out the instruc-
tions of the coordinator correctly. Thus, CLF lacks the local enforcement provided
by LGI.

The present concept of LGI is based squarely on the concept of Law Governed Ar-
chitecture for Distributed System (LGAD) introduced by one of the authors [Minsky
1991]. But there are several significant differences between LGI and its precursor,
which make LGI more general and far more practical. First, LGAD has been an
attempt to define the architecture of an entire distributed system as an enforced
law. This overarching concept of law turned out to be quite impractical for modern
systems operating over the Internet, and have never been fully implemented. It has
been replaced in LGI with a law of group within a system, whose membership is vol-
untary and may change dynamically. This modification made LGI implementable,
it changed the nature of coordination and control under LGI in a fundamental way,
and it made LGI useful for a wide range of applications (which have been explored
in a series of conference papers (see Section 4)).

Second, the implementation of LGI allowed us to address in this paper issues
that could not have been addressed in [Minsky 1991]. These include deployment
techniques, the analysis of the overhead of LGI (discussed in Section 5), and opti-
mization techniques, such as the sharing of controllers, the placement of controllers,
and remote delivery.
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Finally, the law under LGI is considerably more expressive due to its concepts of
exception, which helps in making policies more robust and fault tolerant; and the
concept of enforced obligation, which allows one to ensure liveness properties. Our
concept of enforced obligations is based on a concept of obligation introduced in
[Minsky and Lockman 1985], which was too general for practical implementation.
The adaptation of that concept to LGI was done in collaboration with Dr. Jerry
Leichter. Our notion of obligation has been used later in by Roscheisen in his
thesis [Roscheisen and Winograd 1996]. (For related work on obligation in the
context of deontic logic, see Section 3.1).

7. CONCLUSION

We have argued that the coordination within open groups of autonomous and dis-
tributed agents, and the control of such groups, call for the following principles to be
satisfied: (1) coordination policies need to be enforced; (2) the enforcement needs
to be decentralized; and (3) coordination policies need to be formulated explicitly—
rather than being implicit in the code of the agents involved—and they should be
enforced by means of a generic, broad spectrum mechanism; and (4) it should be
possible to deploy and enforce a policy incrementally, without exacting any cost
from agents and activities not subject to it.

We presented a mechanism called law-governed interaction (LGI), currently im-
plemented by the Moses toolkit, which has been designed to satisfy these principles.
We have shown that LGI is at least as general as a conventional centralized coordi-
nation mechanism (CCM), and that it is more scalable, and generally more efficient
than CCM. But our presentation of the current LGI model is not quite complete.
In particular, we did not describe here the details of implicit groups, briefly men-
tioned in Section 2.1, and we did not discuss at all the very important issue of
interoperability between different L-groups. These issues, and some others, will be
discussed in a subsequent paper.
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